

The world leader in serving science

What is Chromatography?

Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components.

2

What is Ion Chromatography

- 1) Ion Chromatography is a liquid chromatographic technique, with which ionic and strongly polar species can be separated and detected
- 2) Ions can be either Positive Charge (Cations) or Negative Charge (Anions)
- 3) Separation takes place according to their affinity for Ion Exchange Stationary Phases.

3

Thermo Fisher SCIENTIFIC

IC Flow path

4

ThermoFisher SCIENTIFIC

Distinguish between HPLC and IC

	HPLC	IC
1	The 'hardware' of HPLC is made up of SS	The 'hardware' of IC is made up of PEEK material.(Poly Ether Ether Ketone)
2	Generally non ionic mobile phase is use.	Ionic mobile phase is required
3	Stationary phase used in HPLC is mostly bonded Silica	Polystyrene base ion exchange resin copolymer with styrene and dvb is generally used as stationary phase in IC.
4	Only molecule is determined by HPLC	Charged species as well as some molecule can be determined.
5	Absorbance is measured in HPLC	Primarily Conductance is measured in IC
6	Can not used as IC.	Can be used as RP- HPLC.

Principle of Separation on Ion Chromatography (Anions)

Anions (- ve Charge)

6

Eluent should give free OH-/ CO3⁻²/HCO3⁻¹

Strong Bases like NaOH/ KOH and Sodium Carbonate and Bicarbonate

Anion Column will be having Positive sites on Stationary Phase like Quaternary Ammonium Groups with Positive Charge.

At the time of System Equilibration Negative ions from the Eluent will get adsorbed on Positive charge of the column towards Neutrality

Negatively charged analytes will compete with Negative charged Hydroxide or Carbonate or Bicarbonate Eluent lons for Positive sites on the column.

The anions will get attached and again get displaced from positive sites of stationary phase according to their Charge and Size.

Elution Order: F < Cl < Br < SO4< PO3

Ion Exchange Separation – Na₂CO₃ and NaHCO₃ Eluent

In case of NaOH or KOH Eluent "OH" will be the available ions for Interaction

7

Principle of Separation on Ion Chromatography (Cations)

Cations (+ ve Charge)

8

Eluent should give free H+

Strong Acids like Methane Sulfonic acid or Sulfuric Acid

Cation Column will be having Negative sites on Stationary Phase like Sulfonates and Carbonates Groups with Negative Charge.

At the time of System Equilibration Positive ions from the Eluent (H+) will get adsorbed on Negative charge of the column towards Neutrality.

Positively charged analytes (NaCl, KCl) will compete with Positive charged Hydrogen lons for Negative sites on the column.

The Cations will get attached and again get displaced from Negative sites of stationary phase according to their Charge and Size.

```
Elution Order: Li < Na < K < Mg< Ca
```

Thermo Fisher SCIENTIFIC

Retention Determining Parameters

9

ThermoFisher SCIENTIFIC

Instrumentation: Pump, Autosampler

 <u>Eluent Reservoir</u> – It is nothing but mobile phase container. This can be made up of good quality of glass or polypropylene depending upon the nature of mobile phase.

II) <u>Pump</u> – For optimal system performance it is essential that the pump provide smooth, accurate, and precise eluent delivery .The pump material as well as fluid path in the system is made up of Peek (Poly ether ether ketone) material. This peek material is compatible with 0 to 14 PH and with most of organic solvents.

III)<u>Sample Injector</u> – This can be manual or auto to load the fixed amount of standard as well as sample in to the column.

Instrumentation: Guard and Separator Column

 I) <u>Guard Column</u> – generally guard column is made up of same material as analytical column. Guard column prevents direct shock to main analytical column. <u>AG – Anion Guard</u>.

 II) <u>Analytical Column</u> – The column is the heart of ion chromatography. Physically, it consists of a chemically inert tube packed with a polymeric resin. IC columns are available in different sizes and packed with different resins depending upon the application and desired mode of separation. <u>AS – Anion Separator</u>

Working Principle of Suppressor

Chemistry and Ion Movement in an Anion SRS®

ThermoFisher SCIENTIFIC

Chemistry and Ion Movement in Cation SRS[®]

Equivalent Conductance's of Common Ions

An	ions	Cati	ons
lon	I ₀ (μS cm ⁻¹)	lon	l ₀ (μS cm ⁻¹)
OH	198.6	H+	349.8
CI	76.4	Na+	50.1
SO42-	80.0	K+	73.5
NO ₃ ⁻	71.5		
MSA ⁻ *	48.8		

*MSA⁻: Methanesulfonate

15

Advantages of Suppressor

- 1. It reduces the background signal of Conductivity Detector. Increases the sensitivity of analysis.
- 2. It converts analyte in to highly conducting dilute acid and base and hence increases the response of the analyte and hence the sensitivity.
- 3. It removes all the counter ions from Eluent as well as standard salts and hence the analysis become more selective.

3) Detection mode :- Conductivity Detector

- The conductivity of a solution is measured by applying an alternating voltage between two electrodes in a conductivity cell.
- At any instant in time, negatively charged anions migrate towards positive electrode and positively charged cations migrate towards negative electrode

4) Data Mode :- Chromeleon Software

 Signal generated by detector is transmitted to Recorder or directly displayed as a chromatogram on computer. The concentration of ionic analytes are automatically determined and tabulated.

Ion Chromatography Instruments (Gradient Compatible)

1. Aquion System

- 1. Isocratic Pump
- 2. Max Pressure limit 5000 psi
- 3. Only Conductivity and UV detector

Ion Chromatography Instruments (Gradient Compatible)

2. Integrion System

- 1. Isocratic Pump
- 2. Max pressure limit 5000 psi

3. Conductivity,Amperometry andUV detector (One at a time)

Ion Chromatography Instruments (Gradient Compatible)

3. ICS 6000 System

- 1. Quaternary gradient Pump
- 2. Max. pressure 6000 psi
- 3. Consumable Monitoring
- 3. Conductivity, Amperometry and UV detector (in series)

Sensitive Detection

Samples can be diluted to decrease the concentration of matrix components

Specific Detection

Low abundant analytes can be detected in presence of large concentration of matrix components

Analyte-Specific Separations

The selectivity of the separator columns is tailored for the specific requirements of the various analyte classes

Advantages of Ion Chromatography / 1

Speed

- Complete anion and cation profiles in about 15-20 minutes

Sensitivity

- Analyses in the lowest µg/L-range without pre-concentration
- Analyses in the lowest ng/L-range after pre-concentration

Selectivity

- Huge variety of stationary phases
- Specific detection (suppression, UV, fluorescence, MS, ICP)

Advantages of Ion Chromatography / 2

Simultaneity

- Simultaneous analysis of many sample components (In contrast to AAS, photometry, titration, etc.)

Costs

- Cost effective as Mobile phase like coustic or Acids in diluted form is required for analysis.

Robustness

- pH and solvent compatible separators allow a variety of applications
- Analysis of complex matrices such as wastewater, foods, body fluids, etc.

Capacity

Number of ion exchange sites/weight equivalent of column packing. The higher the capacity, the stronger the retention.

Thermo Fisher SCIENTIFIC

Anion Standard on IonPac AS12A

Separation of Alkali and Alkaline-Earth Metals and Ammonium

ELECTRO CHEMICAL DETECTION

ELECTROCHEMICAL DETECTION

The electrochemical detector requires three electrodes:

- Working Electrode (where the oxidation or reduction takes place)
- Auxiliary Electrode (counterelectrode, cell body)
- Reference Electrode (compensates for any changes in the background signal of the mobile phase)

Ampermetic Detector Consist of three part :

- 1.Counter electrode
- 2.Working electrode
- 3.Reference electrode

Principle of Separation on Ion Chromatography (Carbohydrates)

Carbohydrates (with neutral charge)

Eluent comprises of High Strength Hydroxide Phase with sodium acetate for highly retaining analytes

The carboPac series of columns with Pellicular Anion exchange resin bed.

Carbohydrates molecules get ionized at High pH of Eluent forms Oxy-Anions.

These Oxy-Anions retains on Anion exchange columns according to their pKa value.

Higher the pKa value, Lesser the retention

Sodium acetate accelerates the elution of strongly bound species without compromising selectivity and without interfering with pulsed ampereometric detection.

Principle of Separation on Ion Chromatography (Carbohydrates)

Sugar	рКа
Fructose	12.03
Mannose	12.08
Xylose	12.15
Glucose	12.28
Galactose	12.39
Dulcitol	13.43
Sorbitol	13.60
α-Methyl glucoside	13.71

Dionex (now part of Thermo Scientific) Technical Note 20 Analysis of Carbohydrates by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD). Sunnyvale, CA, 2004.

Principle of **Detection** on Ion Chromatography (Carbohydrates)

Carbohydrates

Single Potential (DC) or Waveform (series of potential) runs continuously on Working electrode.

After eluting out from column, the analyte comes in contact with Working electrode and get either oxidized or reduced at the detection potential.

After give and take electrons the current will be generated (recorded as peak), and it will be directly proportional to Analyte concentration.

Constant potential is always maintained between Working and Auxiliary electrode; while Reference electrode whose potential is already known measures and controls the constant potential among them.

In three electrode system, when working electrode works as cathode (Oxidative potential) similar magnitude reductive potential will be generated at other half cell i.e. Auxiliary electrode.

ThermoFisher SCIENTIFIC

Principle of **Detection** on Ion Chromatography (Carbohydrates)

Eluent and analyte coming out from column and going to the working electrode surface where it get either oxidizes or reduced and current generated which shows the peak.

Direct-Current (DC) Amperometry

Example: Analysis of Sulfide and Cyanide

ThermoFisher SCIENTIFIC

Integrated Amperometry

How it works:

- Rapidly repeating pattern of potentials ("waveform")
 applied to electrode
- Current integrated at analytical potential
- Electrode continuously reconditioned

Applications:

- Carbohydrates
- Amino acids
- Alcohols
- Sulfur-containing compounds
- Many electroactive inorganic ions

Standard Quadruple Waveform for Carbohydrates

Time (s)	Potential (V)	Integration
0.00	0.10	
0.20	0.10	Start
0.40	0.10	End
0.41	-2.0	
0.42	-2.0	
0.43	0.60	
0.44	-0.10	
0.50	-0.10	

Detection potential (E1)
 Integration period (Integrate)
 Reductive cleaning potential (E2)
 Oxidative cleaning potential (E3)
 Pre-detection (oxide reduction) potential (E4)
 Dionex (now part of Thermo Scientific) Technical Note 21 Optimal Settings for Pulsed Amperometric

Detection of Carbohydrates Using the Dionex ED40 Electochemical Detector. Sunnyvale, CA, 1998.

Chromatogram : Example

Detection of food sugars and sugar alcohols

ThermoFisher SCIENTIFIC

UV-VIS DETECTOR

Flow Chart for PCR + UV-Vis analysis – Transition Metals and Chromium

Principle of Separation on Ion Chromatography (Transition metals)

Metals (with net Positive charge)

Eluent Contains Chelating agents like carboxylic acid (Pyridine Dicarboxylic acid-PDCA) or Organic acid (Oxalic acid) acid with pH modifiers

The column CS 5 A will be having both Anion as well as cation exchangers

The metal ions will form Complexes with Chelating agents and these complexes will bear particular charge (either positive or Negative)

With Carboxylic acid Eluent the charges will be negative; while with Oxalic acid eluent the charges will be both positive and Negative.

Metal complexes has different charges and Stability Constants (Log k) on which elution order depends.

This eluate comes in contact with PAR indicator in PCR; where these metal complexes again reacts with PAR indicator to form chromophore groups which further get detected on visible wavelength (530 nm)

Principle of Separation on Ion Chromatography (Transition metals)

Principle of Separation on Ion Chromatography (Transition metals)

Species Detected by Ion Chromatography

Conductivity	DC Amperometry	Integrated Amperometry	UV-Vis
Inorganic anions	Catecholamines	Carbohydrates	Silicate
Inorganic Cations	Phenols	Aliphatic amines 1 ⁰ , 2 ⁰ , 3 ⁰	Bromate
Carboxylic acids	Aromatic amines	Amino acids	Chromate
Sulfonic acids	Thiols	Alcohols	Transition metals
Phosphonic acids	Cyanide	Aldehydes	Lanthanides
Amines, 1 ⁰ , 2 ⁰ , 3 ⁰	Sulfide	S species (except S[VI])	Nitrite, Nitrate
	lodide	Sulfite	
	Sulfite	lodide	

ThermoFisher SCIENTIFIC

APPLICATIONS

Water: Bromate in Drinking water

In Disinfection process of water, Ozonation causes formation of Bromate in water which has been proven to be carcinogenic.

Water: Perchlorate in Drinking water

Perchlorate analysis:

Commonly used Oxidizing agent in Solid Propellants, Rockets, fireworks etc. Adverse Health effect because of its presence in ground water:

Column	Ion Pac AS 16 (250 X 2mm) 4 μ + Guard	0.7						Peak 1. Perchlora	te 1µ	g/L	
Eluent	65 mM NaOH										
Flow	0.38 ml/Min	an all									
Injection Vol	250 μl	я Ч		,		_		1			
detection	Conductivity with Anion Suppressor (Current 62 mA)	0.4	·^	2	4		6 Ainutes	8	10	12	2
LOQ	1 μg/L	0					-0				-0

Water: Inorganic anions in Drinking water (EPA Method 300 and 300.1)

Column	Ion Pac AS 22 (250 X 4mm) Guard	3.5 - Peak 2 1. Fluoride 2. Chloride	
Eluent	4.5 mM Carbonate+1.4 mM Bicarbonate	3. Nitrite 4. Nitrate 5 2.0 - 5. Sulfate ∧	
Flow	1.2 ml/Min		
Injection Vol	10 µl	Bottled water	
detection	Conductivity with Anion Suppressor (Current 31 mA)	0 DI water	
		-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	

Water: Cyanide in Ground water and Drinking water

Cyanide in ground water may be the source. Cyanide is toxic even at low concentrations

		1 ₇	
Column	Ion Pac AS 7 (250 X 4mm) + Guard		HS ⁻
Eluent	0.1 mol/L NaOH+0.5 mol/L NaOAC+0.5 % v/v Ethylenediamine	μΑ	
Flow	1.0 ml/Min		
Injection Vol	50 μl		CN- ∧
detection	DC Amperometry (Gold working electrode) OR Cyanide Waveform	0	
LOQ	1 μg/L	0	5 10 Minutes

Water: Total and Hexavalent Chromium in Drinking water

Hexavalent Chromium can enter in ground water through paints, dyes, wood preservatives etc.

		100-	Chromat	ogram: 1. Wast	ewater sample		
Column	Ion Pac CS 5A (250 X 4mm) + Guard	120	Peaks:	2. Spike 1. Cr(III) 2. Cr(VI	d wastewater s 10.56 mg/L 1.26	ample 2	
Eluent	PDCA Eluent	UM M		2. 0(1)	1.20		
Flow	1.0 ml/Min	e e		1			
Injection Vol	50 μl	Absorba		Ń		\int_{c}	Std
detection	UV Detector at 365 nm	-50-					bampie.
LOQ	50 μg/L	0		2 N	4 linutes	6	8

Food: Bromate and iodate in Bread and its floor.

Potassium Bromate and lodate are added in Bread to make it spongier and improve its size. But Bromate is Carcinogenic.

		88	-								
Column	Ion Pac AS 19 (250 X 4mm) + Guard	75		1 - lodate - 3.84	30						
Eluent	20 mM NaOH	63									
PCR	0.3 % Promethazine in 5M HCI (0.5 ml/min)	50			2 - Bromate - 5.09	13					
Eluent Flow	1.0 ml/Min	38									
Injection Vol	25 μΙ	25	2					Bre	ad S	ample	es
detection	UV detector 515 nm		1					S	tanda	ard	
LOD	0.03 mg/L	-10	0.9 2.0 3.0	4.0 5.0	6.0	7.0	8.0	9.0 10.0	11.0	12.0	13.0

Food: Choline in Infant Milk

Choline is required additive in infant formulas and hence need to be evaluated

ThermoFisher SCIENTIFIC

Food: lodide in Infant Milk

Excess lodide may lead to Thyroid disorders in babies

Column	Ion Pac AS 15 (150 X 3 mm) + Guard
Eluent	0.25 M NaOH+1 M NaOAC
Eluent Flow	0.5 ml/Min
Injection Vol	25 μΙ
detection	Pulsed Amperometry with Silver working electrode

Food: Sugars in Dairy Products

Sugar contents need to be Specified on Nutritional fact labels of dairy products.

Column	CarboPac PA 1 Analytical + Guard
Eluent	Hydroxide Gradient
Eluent Flow	0.25 ml/Min
PCR	0.3 M NaOH at 0.3 ml/min Flow rate
Injection Vol	5 μl
Detection	Pulsed Amperometry with Gold working electrode and Ag/AgCl Reference electrode.

Thermo Fisher

55

Food: Polyphosphates in Cheese samples

Column	AS 11 (250 X 2 mm) + AG 11 (50 X 2 mm)				
Eluent	Hydroxide Gradient				
Eluent Flow	0.3 ml/Min				
Injection Vol	10 μl				
detection	Suppressed Conductivity (Anion Suppressor)				
	Peaks: 1. PO_4 2. P_2O_7 3. P_3O_9 4. P_3O_{10} 5. P_4O_{12} 6. P_4O_{13}				

Monosaccharides in Soluble Coffee

Profile of Monosaccharides in coffee sample evaluates its quality³⁵ -

Column	CarboPac PA 10 with Guard
Eluent	1 mM KOH
Eluent Flow	1.0 ml/min (Post Column Addition of 0.3 M NaOH)
Injection Vol	5 μl
detection	Pulsed Amperometry with Gold working electrode
Peaks : 1. Mannitol 2. Fucose 3. Arabinose 4. Rhamnose 5. Galactose 6. Glucose	 7. Sucrose 8. Xylose 9. Mannose 10. Fructose 11. Ribose

Food: Fluoride in Tea

Fluoride may cause dental fluorosis, Bone fractures etc. better Alternative for current Ion selective electrode method NY/T 838-2004

		25	. 2			
Column	Ion Pac AS 18 (150 X 4 mm) + Guard			4 5		
Eluent	20 mM KOH		3		Sample : A Tea 1	Fluoride (mg/Kg)
Eluent Flow	1.0 ml/min	µS c			B Tea 2 C Tea 3 D 200 ppm F ⁻ (N	55 129 NH ₄ F) 200
Injection Vol	100 μl	в			Peaks:	1. Fluoride 2. Chloride 3. Nitrite
detection	Suppressed Conductivity with Anion Suppressor	_A				4. Sulfite 5. Sulfate
		-5	2 4 6			
			Min			

Beverages: Citrate and Phosphate in Soft Drinks

Phosphoric acid and Citric acid used in Cola Syrup as a Stabilizer and Taste maker. Their concentrations are monitored in Manufacturing of Syrup and bottling of Cola Product.

Beverages: Sugars in Soft Drinks

Sugars should be monitored in Soft drinks for quality purpose.

Column	Carbopac PA 20 Analytical + Guard	250 -		2	 Glucose Fructose Sucrose
Eluent	33 mM KOH			3	Soft Drink 2
Eluent Flow	0.5 ml/Min				Diet Soft Drink 1
Injection Vol	10 μl	nC	<u> </u>		Soft Drink 1
Detection	Pulsed Amperometry with Ag/AgCl Ref. electrode Quadrapole Waveform		8		Standard
		-50 -	A	5 Minutes	10 15

Beverages: High Conc Sugars in Scotch Liqueur Sample

Column	Carbopac PA 20 Analytical + Guard
Eluent	35 mM KOH with 100 mM KOH wash
Eluent Flow	0.5 ml/Min
Injection Vol	0.4 μΙ
Detection	Pulsed Amperometry with Ag/AgCl Ref. electrode Quadrapole Waveform

1. Glucose

Beverages: Organic acid Content in Beer samples

Organic acids are end products of yeast fermentation critical to the flavor of beer, but are also products of bacterial fermentation that introduce a sour flavor, either purposely or unintentionally due to spoilage.

	Peaks:	mg/L		mg/L
	1. Quinate	10	21. Nitrate	10
	2. Fluoride	3	Citramalate	15
	Lactate	10	23. Malate	15
Column Ion Pac AS 11 HC Column I + Guard	Acetate	10	24. Carbonate	15
	2-Hydroxybutyrate	10	25. Malonate	15
	Propionate	10	Citraconitate	15
<u></u>	7. Formate	10	27. Maleate	15
Eluent Hydroxide gradient	8. Butyrate	10	28. Sulfate	15
, ,	9. Methanesulfonate	10	α-Ketoglutarate	15
Fluent Flow 0.38 ml/Min	10. Pyruvate	10	30. Oxalate	15
	 Isovalerate 	10	Furnarate	15
	12. Valerate	10	32. Tungstate	20
	 Monochloroacetate 	10	33. Phosphate	20
Injection Vol 2.5 ul	14. Bromate	10	34. Phthalate	20
	15. Chloride	5	35. Arsenate	20
	16. 2-0xovalerate	10	36. Citrate	20
	17. Nitrite	10	37. Chromate	20
Detection Suppressed Conductivity	Ethylphosphate	10	38. Isocitrate	20
	Trifluoroacetate	10	39. cis-Aconitate	
	20. Bromide	10	40. trans-Aconitate	20

Beverages: Organic acid Content in Beer samples

Peaks:	mg/L		mg/L
1. Quinate	10	21. Nitrate	10
2. Fluoride	3	Citramalate	15
Lactate	10	23. Malate	15
4. Acetate	10	24. Carbonate	15
5. 2-Hydroxybutyrate	10	25. Malonate	15
6. Propionate	10	Citraconitate	15
7. Formate	10	27. Maleate	15
8. Butyrate	10	28. Sulfate	15
9. Methanesulfonate	10	α-Ketoglutarate	15
10. Pyruvate	10	30. Oxalate	15
11. Isovalerate	10	Furnarate	15
12. Valerate	10	32. Tungstate	20
13. Monochloroacetate	10	33. Phosphate	20
14. Bromate	10	34. Phthalate	20
15. Chloride	5	35. Arsenate	20
16. 2-0xovalerate	10	36. Citrate	20
17. Nitrite	10	37. Chromate	20
18. Ethylphosphate	10	 Isocitrate 	20
19. Trifluoroacetate	10	39. cis-Aconitate	
20. Bromide	10	40. trans-Aconitate	20

Beverages: Organic acid Content in Beer samples

Peaks:	mg/L		mg/l
1. Quinate	10	21. Nitrate	10
2. Fluoride	3	22. Citramalate	15
3. Lactate	10	23. Malate	15
4. Acetate	10	24. Carbonate	15
2-Hydroxybutyrate	10	Malonate	15
6. Propionate	10	Citraconitate	15
7. Formate	10	27. Maleate	15
8. Butyrate	10	28. Sulfate	15
9. Methanesulfonate	10	α-Ketoglutarate	15
10. Pyruvate	10	30. Oxalate	15
11. Isovalerate	10	Furnarate	15
12. Valerate	10	32. Tungstate	20
13. Monochloroacetate	10	33. Phosphate	20
14. Bromate	10	34. Phthalate	20
15. Chloride	5	35. Arsenate	20
16. 2-Oxovalerate	10	36. Citrate	20
17. Nitrite	10	37. Chromate	20
18. Ethylphosphate	10	38. Isocitrate	20
19. Trifluoroacetate	10	39. cis-Aconitate	
20. Bromide	10	40. trans-Aconitate	20

For Any Queries Contact :

Chanakya Thaker : 9769109963 (<u>chanakya.thaker@thermofisher.com</u>) Chetan Chaudhari : 7738714447 (<u>chetan.chaudhari@thermofisher.com</u>) Ganesh N : 9892048258 (<u>ganesh.n@thermofisher.com</u>) Santosh Gunaga : 9880175960 (<u>santosh.gunaga@thermofisher.com</u>)